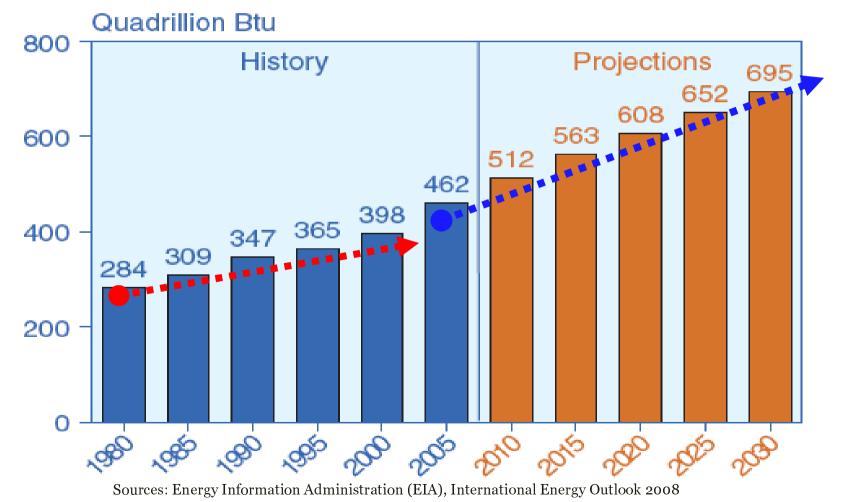
Resources, Environment and the Global Energy Crisis: Needs and Policy Responses

Prof. WEI Longbao

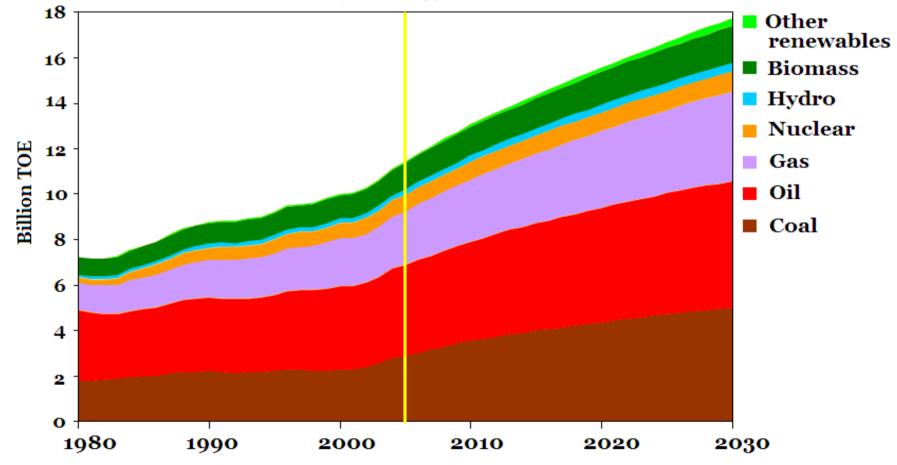
Zhejiang University, School of Management 2008-11, Yangling

Outline


- 1. Energy Crisis and Sustainability
- 2. Sustainability Risk and Response
- ✤3. Global Consensus and Initiatives on CE
- 4. China's Policy Initiatives & Implementation
- 5. Policy Implication for Circular Agriculture

Outline

*1. Energy Crisis and Sustainability
*2. Sustainability Risk and Response
*3. Global Consensus and Initiatives on CE
*4. China's Policy Initiatives & Implementation
*5. Policy Implication for Circular Agriculture


1.1 Energy Situation for Economic Development (1)

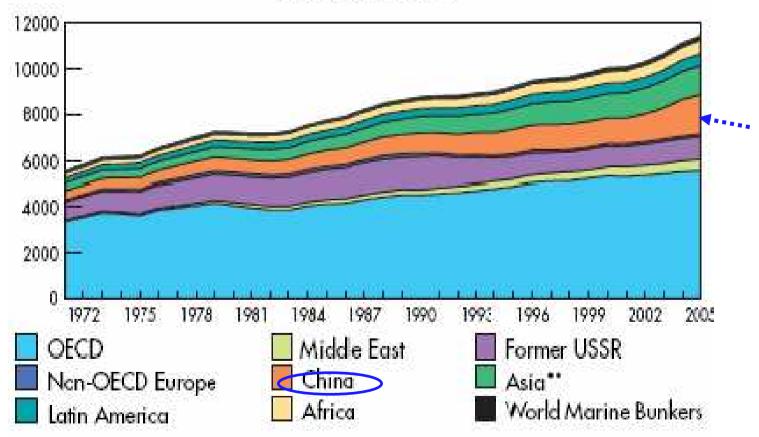
World Marketed Energy Consumption 1980-2030

1.1 Energy Situation for Economic Development (2)

World Primary Energy Demand 1980 -20300

Sources: IEA: World Energy Outlook 2007

1.1 Energy Situation for Economic Development (3)


Projection of Global Demand for Energy 2050

	Actual			growth rate
year	2000	2025	2050	00-50
World Primary Energy Demand (MTOE)	8,667	11710	14087	1.0%
G7 countries	3,500	4045	4407	0.5%
Other OECD countriest	1,185	1242	1282	0.2%
Asian countries	1,575	3626	5157	2.4%
China	723	1868	2672	2.6%
Other Non-OECD countries	2,407	2796	3241	0.6%
World Crude oil Production (Mt)	3,550	4961	5326	0.8%
OPEC	1,453	3455	4662	2.4%
Non-OPEC	2,097	1505	664	- 2.3%
World Primary Energy Prices				
Crude Oil ^a (US\$/bbl)	30.4	40.5	103.1	2.5%
Cude Oil (2002US\$/bbl)	31.6	23.6	36.8	0.3%
Steam Coal ^b (US\$/t)	36.0	67.8	81.0	1.6%
Steam Coal (2002US\$/t)	37.5	39.5	28.9	- 0.5%
Asian LNG ^c (US\$/MBtu)	4.7	7.5	18.6	2.8%
Asian LNG (2002US\$/MBtu)	4.9	4.3	6.7	0.6%
World CO ₂ Emission (100MtCO ₂)	220	330	384	1.1%
Asia (include China, India)	52	117	161	2.3%

Sources: Hoshino, Yuko and Norihisa Sakurai, 2004, *The world energy supply and demand projections to 2050*, CRIEPI Y03027

1.1 Energy Situation for Economic Development (4)

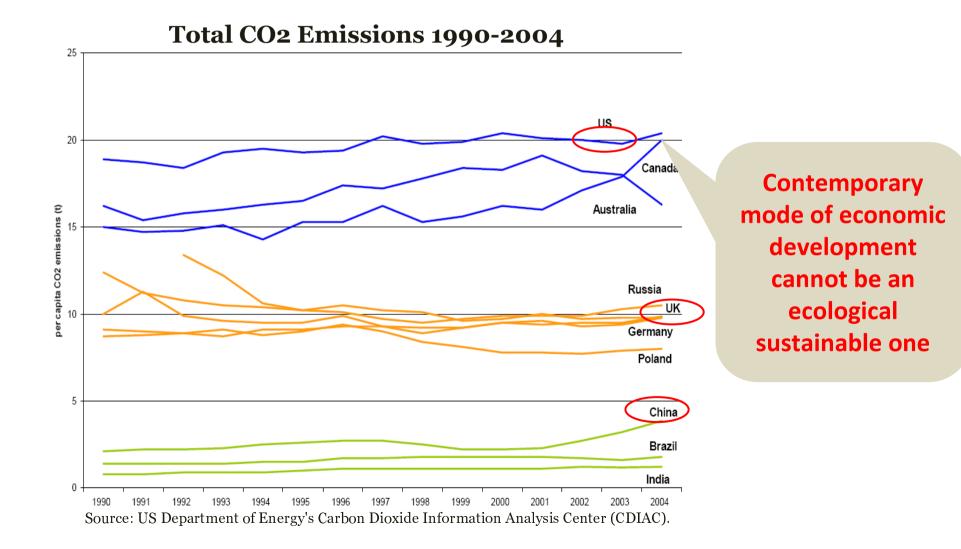
Evolution from 1971 to 2005 of World Total Primary Energy Supply' by Region (Mtoe)

Source: International Energy Agency (IEA)

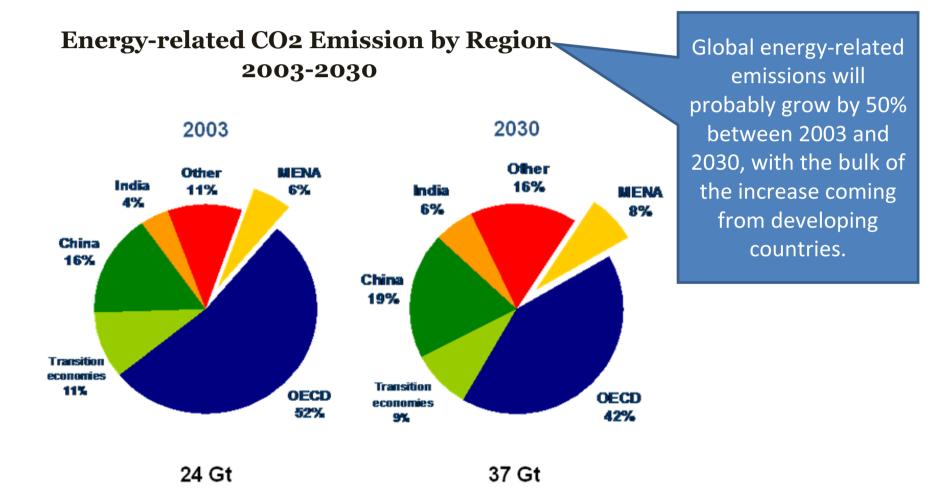
1.1 Energy Situation for Economic Development (5)

- China's Energy Situation Overview
 - Currently second-largest consumer of primary energy in the world (~1000 MTOE);
 - Also second-largest energy producer;
 - Energy consumption was growing at 1.6 times of GDP growth rate in 2004;
 - China's future primary energy demand growth: 2005-2020, average 3-5% as planned;
 - Don't forget: 100 million more cars by 2030

1.1 Energy Situation for Economic Development (6)

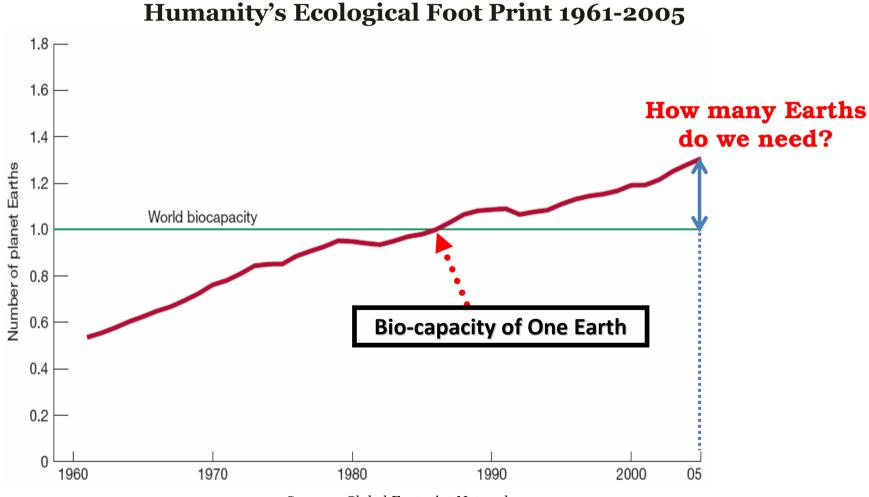

- Bottleneck: We've passed the Peak Oil Point
 - What's Peak oil? A theory states that any finite resource, including oil, will have a beginning, middle, and an end of production, and at some point it will reach a level of maximum output (Hubbert, 1956);
 - Today, half of the Earth's 2 trillion barrels of original endowment of oil has been rapidly used up.
 - We have passed the Peak Oil point.
 - Currently, consumption is **31 billion barrels per year** and is still increasing.

1.1 Energy Situation for Economic Development (7)


• The Demand and Supply Gap

- the prospect of finding much more oil is dim.
- Steep declines in some of the world's oil producing regions. E.g., US in 1971, North Sea in 1999, Mexico in 2006.
- Declines will happen in rest of the world, for example, Middle East and Russia.
- According to IEA, there will be a 12.5 mb/d (million barrels per day) gap between supply and demand.
- The same thing is happening to other traditional energy sources.

1.2 An Ecological Impact Perspective of Sustainability (1)



1.2 An Ecological Impact Perspective of Sustainability (2)

Source: Source: IEA, World Energy Outlook 2006

1.2 An Ecological Impact Perspective of Sustainability (3)

Sources: Global Footprint Network

1.3 A Conclusion

At this level of ecological deficit, exhaustion of ecological assets and large-scale ecosystem collapse become increasingly likely.

We are facing some kind of

Outline

1. Energy Crisis and Sustainability
2. Sustainability Risk and Response
3. Global Consensus and Initiatives on CE
4. China's Policy Initiatives & Implementation
5. Policy Implication for Circular Agriculture

2 Sustainability Risk and Response (1)

We Risk a Global Economic Collapse

- Energy constraint and ecological unsustainability cut off the momentum of development for both LDCs and DCs alike;
- Ecological degradation menace the well-being and existence of human kind;
- The over-population issues in LDCs make the situation even worse;
- The political risk concerning these issues is increasing;

This is a world-wide problem and no country is immune.

2 Sustainability Risk and Response (2)

What should be done?

- Policy initiatives towards sustainable development mode
- Utilize new sources of energy: Coal, Nuclear energy, etc.
- Utilize renewable Resources: Ocean, Wind, Solar, Bio-energy, etc.
- Using energy wisely: promote circular production and consumption (for example, waste to energy), energy and resources conservation, etc.
- CE is aiming at mitigating or removing the conflicts among economic growth, resources and environment.

Outline

1. Energy Crisis and Sustainability
2. Sustainability Risk and Response
3. Global Consensus and Initiatives on CE
4. China's Policy Initiatives & Implementation
5. Policy Implication for Circular Agriculture

3.1 Global Consensus on CE

Global Consensus : Kyoto Protocol

- The Kyoto Protocol, signed on 11 December 1997, entered into force on 16 February 2005, is an international agreement linked to the United Nations Framework Convention on Climate Change (UNFCCC).
- The Protocol sets binding targets for 37 industrialized countries and the European community for reducing greenhouse gas (GHG) emissions.
- These amounts to an average of 5% against 1990 levels over the five-year period 2008-2012.
- 183 Parties of the Convention have ratified its Protocol to date.
- Difference between UNFCCC and Kyoto Protocol

3.2 Ideas of Circular Economy

CE: Basic Ideas

- Kenneth E. Boulding views the Earth as a spaceship (Boulding, 1965) - the resources of this planet are not infinite.
- The meaning of "Circular": 3R: Reduce, Reuse, Recycle
- Change traditional production and consumption pattern towards sustainable one.
- The idea of Circular Economy seems most hopeful and plausible in promoting sustainable development.

3.3 Global Initiatives on CE (1)

German's CE Practices

• Policy Response towards CE

- 1971, Environmental program of the federal government;
- 1972, Waste Disposal Act
- 1974, Federal Emission Control Act
- 1986, Waste Avoidance and Waste Management Act
- 1991, Packaging Ordinance
- 1996, Closed Substance Cycle and Waste Management Act (CSCWMA)
- 2000, Act on Granting Priority to Renewable Energy Sources
- 2001, Ordinance on Environmentally Sound Disposal of Municipal Waste

• Establish Environmental Institutions

- 1971, Council of Experts for Environmental Issues
- 1971, the Federal Environmental Agency

3.3 Global Initiatives on CE (2)

German's CE Practices

- Guiding principles for Policy Initiatives
 - Precautionary protection of the environment;
 - Causal responsibility (i.e. principle of polluter pays);
 - Co-operation;
 - Waste prevention/avoidance is first priority;
 - Re-use has the same priority as recycling;
 - Recycling on-site is prior to recycling off-site;
 - Reduction of toxicity is as important as the reduction of waste quantity;
 - Material recycling is as important as energy recovery;

3.3 Global Initiatives on CE (3)

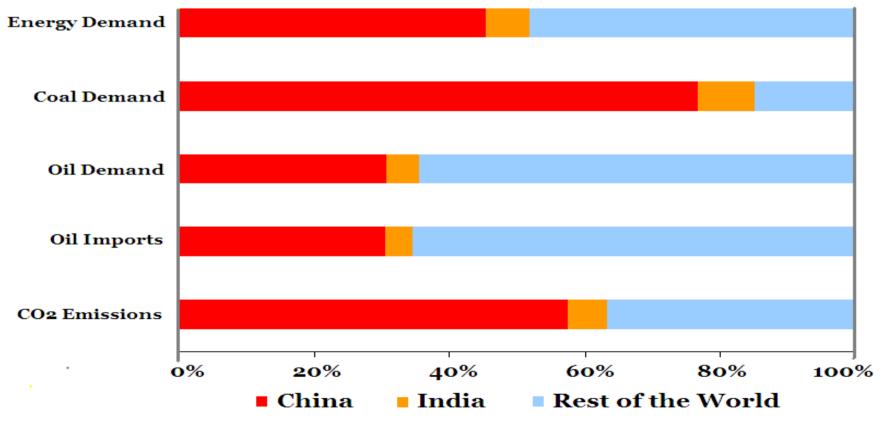
Japan's CE Practice

- A Perfect Laws system consists of 3 sub-groups of laws
 - Basic law
 - Comprehensive law
 - Specialized law
- Directly concerning Circular Economy among which, to name just a few:
 - Law concerning the Rational Use of Energy
 - Fundamental Law for Establishing a Sound Material-Cycle Society
 - Law for the Promotion of Effective Utilization of Resources
 - Law for Promotion of Sorted Collection and Recycling of Containers and Packaging
 - Law for Recycling of Specified Kinds of Home Appliances
 - Law for the Promotion of the Utilization of Recyclable Food Resources
 - Law for the Recycling of Construction Materials
 - Law for the Recycling of End-of-Life Vehicles
 - Waste Management and Public Cleansing Law

3.4 What can we Learn from Practice?

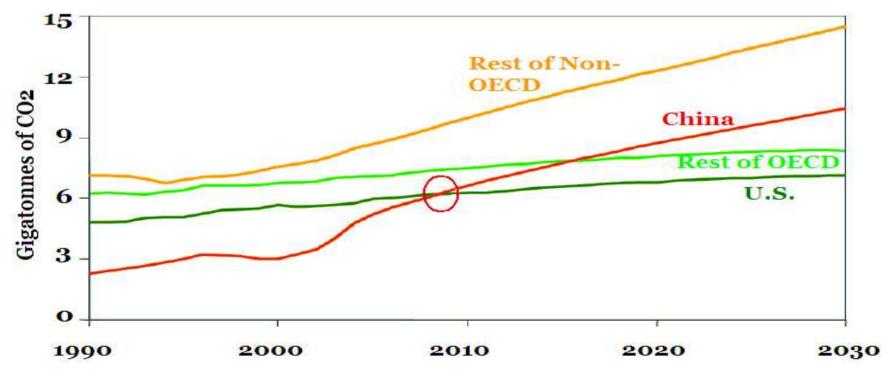
What can we learn from these initiatives?

- There are different approaches and different strategies towards a circular economy. CE policy should be based on specific conditions of the country.
- Germany has the more holistic approach toward a sustainable society which as a matter of fact includes a Circular Economy, while Japan has a comprehensive law system.
- Circular Economy is beyond reduction or control of waste, it should cover the ecosystem management aspects like biodiversity, water protection, land use, and a society motivation.
- Policy mechanism such as law and regulation system and government intervention such as societal education can play crucial roles in the development of CE.

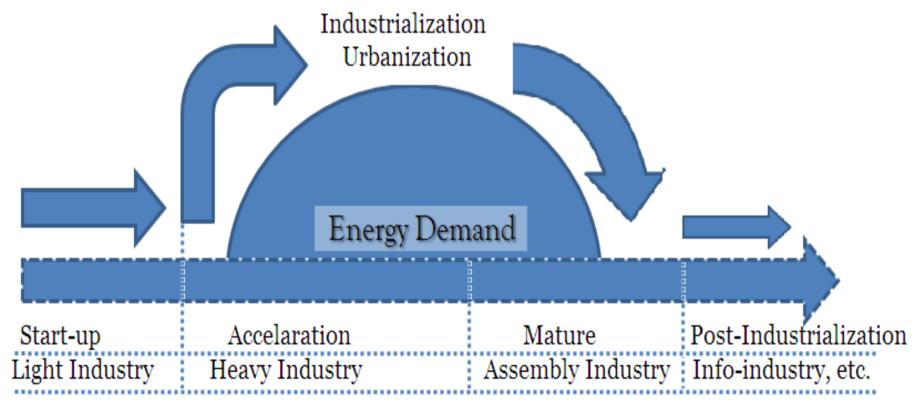

Outline

1. Energy Crisis and Sustainability
2. Sustainability Risk and Response
3. Global Consensus and Initiatives on CE
4. China's Policy Initiatives & Implementation
5. Policy Implication for Circular Agriculture

Outstanding GDP growth in past decades


A great part of the increase in global demand for energy and CO2 since 2000.

Sources: IEA: World Energy Outlook 2007


• The energy-related ecological and environmental cost is also quite high.

IEA Reference Scenario: Energy-Related CO2 emission by Region

Source: IEA: World Energy Outlook 2006

China is coming from Acceleration period of Industrialization into Mature and Post-Industrialization era of development, the demand for energy is still at the peak but there's an urgent need to and also a prospect of lowering it down.

Source: Drawn by Author.

Following problems also need to be tackled along with its efforts in stimulate the economic engine.

- Meet a higher standard of living for a growing population
- Seeking for higher resource efficiency and lower pollution
- Improving industrial competitiveness upon the entrance into WTO
- Respond to the responsibility in the global effort regard climate change

All of above adds to the motivation for China to adopt a sustainable way of economic development.

4.2 Policies for China's CE Development

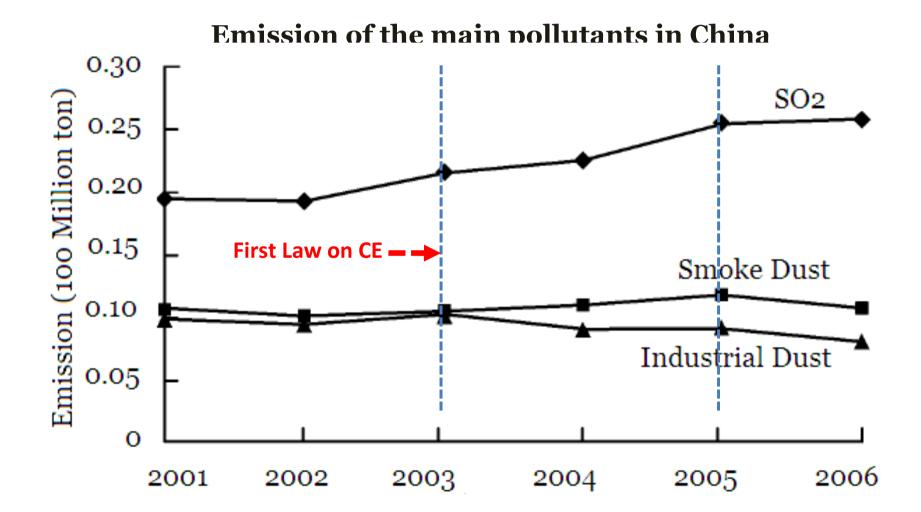
Strategies for CE development:

- Energy-saving and High-efficiency
- Diversified Development
- Environment Protective
- Technology Guidance
- International Cooperation

Objectives of 11th-Five Year Plan (2005-2010)

- Energy consumption per GDP decrease by 20%
- Total emissions of main pollutants decrease by 10%
- Forest coverage from 18.2% to 20%
- Comprehensive utilization of industrial solid wastes increase to 60%

4.2 Policies for China's CE Development


• Major CE Laws and Regulations:

- January 1, 2003, Law on Promotion of Cleaner Production
- September 1, 2003, Environment Impact Assessment Law
- 2004, amendment in Law on prevention and control of environmental pollution by solid wastes
- June 1, 2005, Renewable Energy Law
- October 2003, Suggestions on accelerating cleaner production
- October 1, 2004, Method for the Audit of Clean Production
- Aug. 29, 2008 Circular Economy Promotion Law

• Major Initiatives in Recent Years:

- "Small-sized circulation": Cleaner production at 5000 enterprises nationwide
- "Medium-sized circulation": About 20 national pilot eco-industrial parks
- "Regional-level circular economy": 8 national pilot regions, including 2 provinces and 6 cities

4.2 Policy Effect : Still a Long Way to Go

Sources: China Statistical Yearbook 2001 - 2007

4.3 Challenges for China's CE

- What is circular economy?
- CE vs. China's economic development stage: the energy bottleneck;
- The inertia in contemporary economic development mode;
- Should we still welcome certain INVESTMENTS?
- The lag-behind in laws system and the stimulation;
- The lack of Green GDP Accounting systems and shortsighted government activities;
- The CE technology R&D and extension issues;
- The public awareness.

4.3 Challenges for China's CE – Response.

- Some Holistic Point of View beyond 3R
 - CE is beyond CP, Circular Use of Resources or Waste Management.
 - *CE* should be sustainable: both circular and **economy**.
 - CE itself is not the end.
- A Chinese-way of Circular Economy needs to be explored by theorists and policy makers;
- What the government should do?

Outline

1. Energy Crisis and Sustainability
2. Sustainability Risk and Response
3. Global Consensus and Initiatives on CE
4. China's Policy Initiatives & Implementation
5. Policy Implication for Circular Agriculture

5.1 CA & CE

CA should take an important position in national CE development policy consideration. The development of CA provides a chance for transformation to a sustainable economic development, which is one of the major initiatives in recent rural development policies.

- Within the CE framework, Circular Agricultural Economy or Circular Agriculture has multiple meanings:
 - Clean Production
 - Minimization of Emission
 - Waste Utilization
 - Circular Consumption

5.2 CA & Energy Issues (1)

- As for today's energy and environmental situation, we can see that Circular Agriculture (production) has a lot to do:
 - First, CA provide the supply-side solutions to the energy crisis;

Resource characteristics of energy carriers					
	Depletable	Non-depletable			
Renewable	Biological Energy Resources				
	Natural gas Mineral oil	Tidal power Solar energy			
Non-renewable	Coal Uranium	Hydro-energy Wind energy			

Source: *Deutsche Bank Research*, December 2, 2004

5.2 CA & Energy Issues (2)

- As for today's energy and environmental situation, we can see that Circular Agriculture (production) has a lot to do:
 - Second, CA offers the mitigation to eco-degradation effect of economic development;
 - Maximization of energy and resources efficiency;

• Reduce chemicals and fertilizer use;

- Minimization of waste through integrated production process;
- o Improve water and air quality;

5.3 Three Levels of CA policy Objectives (1)

- At the Micro level:
 - Encourage farmers to seek higher efficiency through the three Rs of CP;
 - Reduce consumption of resources;
 - Reduce emission of pollutants and waste;
 - Reuse resources;
 - Recycle by-products;
 - etc.

5.3 Three Levels of CA policy Objectives (1)

- At the Meso level:
 - Encourage partnership between agricultural firms and government;
 - Encourage cooperation in CA R&D and extension services;
 - Reuse and recycle resources within industrial parks;
 - Reuse and recycle resources and by-products within clustered or chained industries;
 - etc.

5.3 Three Levels of CA policy Objectives (1)

- At the Macro level:
 - Integrate Regional Agricultural Production and Consumption Systems
 - Circulate resources among industries and rural-urban systems
 - Development of municipal or regional by-product collection, storage, processing, and distribution systems.
 - Stimulate regional and international cooperation;
 - Ensure biodiversity using market/market-oriented instruments;
 - etc.

